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1Dept. of Information Engineering and Computer Science, University of Trento, Trento, Italy
2Faculty of Electrical Engineering and Computer Science, TU Berlin, Berlin, Germany

ABSTRACT

Most of the public satellite image datasets contain only a
small number of annotated images. The lack of a sufficient
quantity of labeled data for training is a bottleneck for the
use of modern deep-learning based classification approaches
in this domain. In this paper we propose a semi-supervised
approach to deal with this problem. We use the discrimi-
nator (D) of a Generative Adversarial Network (GAN) as
the final classifier, and we train D using both labeled and
unlabeled data. The main novelty we introduce is the repre-
sentation of the visual information fed to D by means of two
different channels: the original image and its “semantic” rep-
resentation, the latter being obtained by means of an external
network trained on ImageNet. The two channels are fused in
D and jointly used to classify fake images, real labeled and
real unlabeled images. We show that using only 100 labeled
images, the proposed approach achieves an accuracy close
to 69% and a significant improvement with respect to other
GAN-based semi-supervised methods. Although we have
tested our approach only on satellite images, we do not use
any domain-specific knowledge. Thus, our method can be
applied to other semi-supervised domains.

Index Terms— semi-supervised learning, generative ad-
versarial networks, satellite image classification

1. INTRODUCTION

One of the reasons for which satellite image classification
is challenging is due to the lack of large annotated training
datasets which has prevented so far the systematic adoption
of modern deep-learning based approaches in this field. Com-
mon deep-learning methods (e.g., ResNets [1]) achieve a high
image classification accuracy when trained in a supervised
regime with plenty of annotated data [2]. However, despite
very recently a few satellite datasets have been publicly re-
leased which contain thousands of images, most of the cur-
rent application scenarios in this field are based on training
datasets of only a few hundreds of labeled images.

On the other hand, recent trends in deep learning research
have shown the possibility to use a semi-supervised train-
ing regime for training deep networks. For instance, Sali-

Fig. 1. SF-GAN overview: The generator G produces fake
images by sampling from the noise distribution pz . The dis-
criminatorD has access toXreal (containing both labeled and
unlabeled images) andXfake, as well as their semantic repre-
sentation s(·), obtained using a pre-trained deep network. D
outputs a probability distribution over K + 1 classes where
the first K classes are real and the final class is fake.

mans et al. [3] showed that Generative Adversarial Networks
(GANs) [4] can be used to boost the accuracy of a classifier
using semi-supervised data. The main idea is that the clas-
sifier corresponds to the discriminator D of a GAN, trained
together with a generator G. However, different from a stan-
dard GAN, where D is asked to discriminate between “real”
and “fake” images (the latter being produced by G), in the
semi-supervised framework proposed in [3], D is also asked
to predict the correct class of those subset of images which are
associated with labels. Intuitively, the gain comes from the
exploitation of the additional unlabeled images, from which
D needs to extract dataset-specific visual information which
allows it to discriminate these images from the fake ones.

In this paper we build on this idea of adding semantics.
Specifically, we exploit an external network, trained on Ima-
geNet (which contains no satellite-image), to extract generic
visual information from our domain-specific images. We feed
the satellite images to the Inception Net [5] and we extract
a high-level representation of these images using the activa-
tion values of its last convolutional layer. Then we fuse this
representation with an analogous representation obtained in
the last convolutional layer of D. In this way, the decision



of D depends (also) on generic visual semantics, extracted
by means of the Inception Net, where the latter leverages the
large dataset (ImageNet) it has been trained on (see Fig. 1).
We call this approach Semantic Fusion GAN (SF-GAN) and
we empirically show that SF-GAN achieves a large accuracy
boost with respect to both ”standard” supervised-trained deep
networks and semi-supervised GANs, especially when the
cardinality of the labeled training subset is very small.

2. RELATED WORK

Semi-supervised learning has been largely addressed in the
past years using kernel-based methods. For instance, Chang
et. al. [6] extend Locality-Constrained Linear Coding (LLC)
[7] to a semi-supervised scenario where a kernelized LLC is
used to learn the underlying data manifold, given only a sub-
set of labeled images. Blanchart et al. [8] use SVMs in a
semi-supervised setting for satellite image classification.

More recently, Salimans et al. [3] showed that the combi-
nation of a supervised and a semi-supervised loss in a GAN
framework helps in boosting the target classification problem
(more details in Sec. 3). Springenberg et al. [9] extend this
idea combining the optimization of the Shannon entropy as
the adversarial objective with minimizing the cross-entropy
loss for the labeled samples. The feature matching loss, in-
troduced in [3], which compares real and fake images us-
ing an intermediate layer of the discriminator, is extended in
[10] (perceptual loss) using the feature space of a layer of an
externally-trained network. We also use an externally-trained
network to inject “semantics” in our framework. However,
while the perceptual loss in [10] can be used only for condi-
tional GANs, in which the generator’s outcome depends on
a real input image, our SF-GAN operates in an unconditional
regime. Moreover, differently from [10], the external network
in our case is not used as an auxiliary loss function but for pro-
viding semantic information to aid the discriminator decision.

Semi-supervised classification using GANs is also pro-
posed in [11] where the discriminator outputs a multi-class
probability distribution. Unsupervised and fully-supervised
learning are combined in [12] in a two-stage approach. In
the first stage, unlabeled data are used in the GAN setting to
train the discriminatror D. Once fully trained, D is used as
a feature extractor to obtain a representation of the labeled
samples. In the second stage these representations are used to
train an SVM classifier in a standard supervised framework.

3. PROBLEM SETTING

In this section we review the standard GAN [4] and the semi-
supervised GAN approach [3] and we introduce our notation.
Our proposed SF-GAN is presented in the next section.

Let X = {x1, ..., xN} be the set of training images which
are partly associated with class labels. Specifically, Xl =
{x1, ..., xM} is the subset of images associated with labels,

respectively collected in Y = {y1, ..., yM}, yi ∈ {1, ...,K}.
On the other hand, Xu = {xM+1, ..., xN} is the subset of
unlabeled images, where typically M << N . The goal of
a semi-supervised approach is to train a classifier simultane-
ously exploiting both (Xl, Y ) and Xu.

The standard GAN framework consists of two antagonis-
tic networks: a generator G and a discriminator D. G takes
as input a noise vector, randomly generated using an a-priori
distribution (z ∼ pz) and deterministically generates a fake
image x̂ = G(z; θG), typically using an up-convolutional
neural network [12], where θG are the parameters of G. On
the other hand, D takes as input an image, which is either
real, x, or fake, x̂. The outcome of D is a binary classi-
fication probability of the input image being extracted from
the real dataset or produced by G, which can be denoted as
pD(x) = D(x; θD), θD being the parameters of D. The goal
of D is to assign a high probability to x ∼ pdata and a low
probability to x̂ = G(z), z ∼ pz . On the other hand, G aims
to maximize the probability of the fake images being classi-
fied as real without having access to the real data. The overall
GAN objective function can be written as follows:

m
G
in m

D
ax Ex∼pdata(x) [ log(D(x))]

+Ez∼pz(z) [ log(1−D(G(z)))]
(1)

Salimans et al. [3] extend the above framework to deal
with semi-supervised learning by adding K final neurons to
D, one per target class. The outcome of D is now a multi-
class prediction represented by a K + 1 dimensional logit
output which comprises of K real classes and a (K + 1)-th
class representing the fake images. The loss function of D is
consequently split into a supervised and an unsupervised loss:
LD = Lsup + Lunsup, where:

Lsup = −Ex,y∼pdata(x,y) [ log(pD(y|x, y < K + 1))] (2)

and

Lunsup = −Ex∼pdata(x) [ log(1− pD(y = K + 1|x))]
−Ez∼pz(z) [ log(pD(y = K + 1|G(z)))]

(3)
The loss function of G remains unchanged. In the next

section we show how to modify the posterior probabilities
computed by D (i.e., pD(x)) in order to embed visual seman-
tics extracted from a generic, external network.

4. PROPOSED SF-GAN

The main idea behind SF-GAN is to enrich the image repre-
sentation fed toD using generic visual semantics extracted by
means of an external network, trained on a generic, large and
fully-supervised dataset (ImageNet). Specifically, let s(x) be
the vector of the activation values of the last convolutional
layer (Mixed 7c) of the Inception Net [5] when input with
image x. We write D(x, s(x)) to highlight the dependence of



D from both the original image x and its semantic represen-
tation s(x) (see below for details). The posterior probability
of class k is computed using:

pD(y = k|x, s(x)) =
eDk(x,s(x))∑K

k′=1 e
Dk′ (x,s(x))

, (4)

where Dk(·, ·) is the score assigned to class k by D. Using
Eq. 4 to compute pD() in Eq. 2-3 we obtain our discriminator
loss. For trainingG, we use a standard generator loss with the
addition of the feature matching loss (see Sec. 2).

Fig. 2. The proposed SF-GAN discriminator D takes as input
both a 64 × 64 × 3 RGB image x and its semantic represen-
tation s(x) and outputs a K+1 logit. The vector s(x) is fused
with f(x), the internal representation of x, in the penultimate
layer of D.

4.1. THE DISCRIMINATOR ARCHITECTURE

As shown in Fig. 2, D takes as input an RGB image (ei-
ther real or fake), of spatial dimension 64 × 64. This input
is passed through a sequence of convolutional layers, batch
normalizations and Leaky ReLU non-linearities, finally pro-
ducing a 4×4×128 tensor, where 4×4 is the spatial resolution
and 128 is the number of feature maps. We extract a repre-
sentation f(x) from this tensor using Global Average Pooling
(GAP) [13]. GAP averages the information content of the fea-
ture maps spatially, each map being averaged independently
of the others. In our case, the content of each feature map is
averaged over the 4× 4 spatial grid to produce a single scalar
value. f(x) is the concatenation of all the 128 average values
and is further concatenated with s(x). The latter is obtained
by feeding a pre-trained Inception Net with x. Using the last
convolutional layer of the Inception Net we obtain a repre-
sentation of x as a tensor of dimension 8 × 8 × 2048. Simi-
larly to D, we apply GAP to this second tensor to get a 2048-
dimensional feature vector s(x). After fusion, [f(x), s(x)] is
processed by a final fully-connected layer which outputs the
(K + 1)-dimensional logit.

Generator Discriminator
Layer Configuration Layer Configuration

FC 1 2048 Conv 1
filter: 64x[3,3,3];

stride: 2

UpConv 1
filter: 64x[5,5,128];

stride: 0.5 Conv 2
filter: 64x[3,3,64];

stride: 2

UpConv 2
filter: 32x[5,5,64];

stride: 0.5 Conv 3
filter: 64x[3,3,64];

stride: 2

UpConv 3
filter: 32x[5,5,32];

stride: 0.5 Conv 4
filter: 64x[3,3,64];

stride: 2

UpConv 4
filter: 3x[5,5,32];

stride: 0.5 Conv 5
filter: 128x[3,3,64];

stride: 1

- - Conv 6
filter: 128x[3,3,128];

stride: 1

- - Conv 7
filter: 128x[3,3,128];

stride: 1
- - Avg pool 7 pool: 4x4
- - FC 8 2176 (=128+2048)

Table 1. Details of G and D. The filter configuration is de-
scribed as: number of filters x [height, width, input channels].

4.2. IMPLEMENTATION DETAILS

Since the number of labeled images is usually small, we use
dropout [14] in the discriminator network to help regularizing
the learning process. We do not use batch normalization in the
intermediate layer (Conv 7) utilized for computing the feature
matching loss. This is done in order to make the mean of
the intermediate features of the real data different from the
generated samples.

The generatorG is a standard DCGAN [12] network com-
posed of a sequence of up-convolutional layers with fractional
stride, each layer except the last being followed by a batch
normalization layer and a Leaky ReLU non-linearity. Table
1 shows the architectural details of both G and D.

5. EXPERIMENTAL RESULTS

In our experiments we use the recently published EuroSAT
dataset [15], composed of 27,000 annotated satellite images
acquired by the Sentinel-2 satellite and grouped into 10 differ-
ent land-use categories where each image belongs to a single
category (e.g., “Industrial”, “Residential”, etc.). Each image
consists of 13 bands, however, in our experiments we have
considered RGB bands only as in [15]. The image spatial res-
olution is 64 × 64. Following the protocol in [15], we use
21,600 images for training. Moreover, we further split the re-
maining 5,400 images in 4,860 samples used for testing and
540 images used for validation.

Note that this dataset is much larger than common pub-
lic satellite image datasets, and we chose EuroSAT in order
to show results obtained varying the amount of labels acces-
sible during the training process. Specifically, we simulate a
scenario in which we have access to only a limited amount of
labeled data M (M = |Xl|, see Sec. 3), varying M between
100 and 21,600. For a fixed value of M , the remaining train-



Method Training regime # of labels M (% over the full training set)
100 (0.46) 1000 (4.6) 2000 (9.25) 21,600 (100)

CNN (from scratch) Supervised 29.3 46.1 59.0 83.2
Inception Net [5] (fine tuned) Supervised 63.9 84.6 87.9 91.5

SS-GAN [3] Semi-supervised 63.0 75.8 78.3 86.9
Proposed SF-GAN Semi-Supervised 68.6 86.1 89.0 93.2

Table 2. Classification accuracy (%) on the EuroSAT test set.

ing data are used without labels (Xu). We train our SF-GAN1

using Adam with β1 = 0.5 and β2 = 0.9 and a batch size of
128. G and D are trained for 30 epochs and in every epoch
the learning rate is shrank by a factor of 0.9 starting from an
initial value of 3 ∗ 10−4.

We compare the classification accuracy of SF-GAN with:
1) A Convolutional Neural Network (CNN) trained from
scratch, with a network capacity similar to the SF-GAN’s
discriminator network capacity; 2) Inception Net [5] with
its final layer fine tuned on EuroSAT; and 3) The Semi-
Supervised GAN (SS-GAN) approach proposed in [3]. Note
that, to the best of our knowledge, no other semi-supervised
method has been tested on EuroSAT yet. The results re-
ported in Table 2 show that, as expected, when M = 100,
the CNN trained from scratch performs very poorly. Note
that, being the CNN trained in a fully-supervised fashion, it
cannot use Xu. The same situation applies to the fine-tuning
of the Inception Net. Conversely, with the same number of
labeled images, M = 100, the proposed SF-GAN surpasses
all the other classification methods including SS-GAN [3].
As we increase the number of labels M , the accuracy in-
creases monotonically for every method. For instance, at
M = 2, 000, the accuracy of the fine-tuned Inception Net
comes pretty close to our method. However, when compared
to [3], our method is still 10.7% better. Interestingly, SF-
GAN achieves a higher accuracy with respect to Inception
Net even when all the training data are associated with their
corresponding labels. This is likely due to the fact that the
discriminator D in SF-GAN has access to Xfake (see Fig. 1),
an additional source of information which is not available to
the Inception Net, and needs to additionally discriminate fake
images from real ones.

Finally, in our experiments we observed that SF-GAN
reaches a faster convergence with less number of epochs when
compared with SS-GAN [3]. As shown in Fig. 3, the accuracy
on the validation set of our SF-GAN converges after epoch 9,
whereas SS-GAN is still rising even after the 15-th epoch.
Note that the Inception Net needs 200 epochs to converge;
however, being only the last layer involved in the fine-tuning
process, its overall training time is shorter. Both the faster
convergence and the higher final accuracy results of SF-GAN
with respect to SS-GAN show that the injection of seman-

1Code is available at https://github.com/MLEnthusiast/
SFGAN

tic information into D helps the discriminator (and, conse-
quently, also the generator) to quickly learn the underlying
real data distribution.

Fig. 3. Accuracy on the validation set over different training
epochs of the tested methods when M = 100.

6. CONCLUSIONS

In this paper we proposed SF-GAN, a semi-supervised clas-
sification approach based on a GAN framework, for satellite
image classification with scarcity of annotated data. The SF-
GAN discriminator fuses the high-level representation of an
image, obtained using a pre-trained, external deep network,
with the image representation of the standard DCGAN dis-
criminator. Experimental results show that the proposed ar-
chitecture: 1) achieves a significantly higher overall accu-
racy when compared with other semi-supervised and fully-
supervised classification methods, especially in a scenario in
which only a few images are annotated; 2) achieves a faster
convergence while training.

Even if the proposed method has been tested with satellite
images, no domain-specific constraint or a-priori knowledge
is used in our approach. Consequently, we believe that SF-
GANs can be easily adopted in other semi-supervised image
classification tasks.
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